3.2.34 \(\int \frac {(d+c^2 d x^2)^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx\) [134]

3.2.34.1 Optimal result
3.2.34.2 Mathematica [A] (verified)
3.2.34.3 Rubi [C] (verified)
3.2.34.4 Maple [A] (verified)
3.2.34.5 Fricas [F]
3.2.34.6 Sympy [F]
3.2.34.7 Maxima [F]
3.2.34.8 Giac [F(-2)]
3.2.34.9 Mupad [F(-1)]

3.2.34.1 Optimal result

Integrand size = 26, antiderivative size = 270 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=-\frac {b c d \sqrt {d+c^2 d x^2}}{2 x \sqrt {1+c^2 x^2}}-\frac {b c^3 d x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}+\frac {3}{2} c^2 d \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))-\frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {3 c^2 d \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {3 b c^2 d \sqrt {d+c^2 d x^2} \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )}{2 \sqrt {1+c^2 x^2}}+\frac {3 b c^2 d \sqrt {d+c^2 d x^2} \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )}{2 \sqrt {1+c^2 x^2}} \]

output
-1/2*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x^2+3/2*c^2*d*(a+b*arcsinh(c*x 
))*(c^2*d*x^2+d)^(1/2)-1/2*b*c*d*(c^2*d*x^2+d)^(1/2)/x/(c^2*x^2+1)^(1/2)-b 
*c^3*d*x*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-3*c^2*d*(a+b*arcsinh(c*x))* 
arctanh(c*x+(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-3/2*b 
*c^2*d*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^( 
1/2)+3/2*b*c^2*d*polylog(2,c*x+(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2 
*x^2+1)^(1/2)
 
3.2.34.2 Mathematica [A] (verified)

Time = 3.47 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.30 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=a \left (c^2 d-\frac {d}{2 x^2}\right ) \sqrt {d+c^2 d x^2}+\frac {3}{2} a c^2 d^{3/2} \log (x)-\frac {3}{2} a c^2 d^{3/2} \log \left (d+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {b c^2 d \sqrt {d+c^2 d x^2} \left (-c x+\sqrt {1+c^2 x^2} \text {arcsinh}(c x)+\text {arcsinh}(c x) \log \left (1-e^{-\text {arcsinh}(c x)}\right )-\text {arcsinh}(c x) \log \left (1+e^{-\text {arcsinh}(c x)}\right )+\operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c x)}\right )-\operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c x)}\right )\right )}{\sqrt {1+c^2 x^2}}+\frac {b c^2 d \sqrt {d+c^2 d x^2} \left (-2 \coth \left (\frac {1}{2} \text {arcsinh}(c x)\right )-\text {arcsinh}(c x) \text {csch}^2\left (\frac {1}{2} \text {arcsinh}(c x)\right )+4 \text {arcsinh}(c x) \log \left (1-e^{-\text {arcsinh}(c x)}\right )-4 \text {arcsinh}(c x) \log \left (1+e^{-\text {arcsinh}(c x)}\right )+4 \operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c x)}\right )-4 \operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c x)}\right )-\text {arcsinh}(c x) \text {sech}^2\left (\frac {1}{2} \text {arcsinh}(c x)\right )+2 \tanh \left (\frac {1}{2} \text {arcsinh}(c x)\right )\right )}{8 \sqrt {1+c^2 x^2}} \]

input
Integrate[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x^3,x]
 
output
a*(c^2*d - d/(2*x^2))*Sqrt[d + c^2*d*x^2] + (3*a*c^2*d^(3/2)*Log[x])/2 - ( 
3*a*c^2*d^(3/2)*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]])/2 + (b*c^2*d*Sqrt[d 
+ c^2*d*x^2]*(-(c*x) + Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + ArcSinh[c*x]*Log[1 
 - E^(-ArcSinh[c*x])] - ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + PolyLog[ 
2, -E^(-ArcSinh[c*x])] - PolyLog[2, E^(-ArcSinh[c*x])]))/Sqrt[1 + c^2*x^2] 
 + (b*c^2*d*Sqrt[d + c^2*d*x^2]*(-2*Coth[ArcSinh[c*x]/2] - ArcSinh[c*x]*Cs 
ch[ArcSinh[c*x]/2]^2 + 4*ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])] - 4*ArcSi 
nh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + 4*PolyLog[2, -E^(-ArcSinh[c*x])] - 4* 
PolyLog[2, E^(-ArcSinh[c*x])] - ArcSinh[c*x]*Sech[ArcSinh[c*x]/2]^2 + 2*Ta 
nh[ArcSinh[c*x]/2]))/(8*Sqrt[1 + c^2*x^2])
 
3.2.34.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.00 (sec) , antiderivative size = 218, normalized size of antiderivative = 0.81, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {6222, 244, 2009, 6221, 24, 6231, 3042, 26, 4670, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx\)

\(\Big \downarrow \) 6222

\(\displaystyle \frac {3}{2} c^2 d \int \frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{x}dx+\frac {b c d \sqrt {c^2 d x^2+d} \int \frac {c^2 x^2+1}{x^2}dx}{2 \sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}\)

\(\Big \downarrow \) 244

\(\displaystyle \frac {3}{2} c^2 d \int \frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{x}dx+\frac {b c d \sqrt {c^2 d x^2+d} \int \left (c^2+\frac {1}{x^2}\right )dx}{2 \sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3}{2} c^2 d \int \frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{x}dx-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 6221

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {\sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 x^2+1}}dx}{\sqrt {c^2 x^2+1}}-\frac {b c \sqrt {c^2 d x^2+d} \int 1dx}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {\sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 x^2+1}}dx}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 6231

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {\sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{c x}d\text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {\sqrt {c^2 d x^2+d} \int i (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {i \sqrt {c^2 d x^2+d} \int (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 4670

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {i \sqrt {c^2 d x^2+d} \left (i b \int \log \left (1-e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)-i b \int \log \left (1+e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {i \sqrt {c^2 d x^2+d} \left (i b \int e^{-\text {arcsinh}(c x)} \log \left (1-e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}-i b \int e^{-\text {arcsinh}(c x)} \log \left (1+e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {3}{2} c^2 d \left (\frac {i \sqrt {c^2 d x^2+d} \left (2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))+i b \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )\right )}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))-\frac {b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))}{2 x^2}+\frac {b c d \left (c^2 x-\frac {1}{x}\right ) \sqrt {c^2 d x^2+d}}{2 \sqrt {c^2 x^2+1}}\)

input
Int[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x^3,x]
 
output
(b*c*d*(-x^(-1) + c^2*x)*Sqrt[d + c^2*d*x^2])/(2*Sqrt[1 + c^2*x^2]) - ((d 
+ c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/(2*x^2) + (3*c^2*d*(-((b*c*x*Sqrt 
[d + c^2*d*x^2])/Sqrt[1 + c^2*x^2]) + Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c 
*x]) + (I*Sqrt[d + c^2*d*x^2]*((2*I)*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSin 
h[c*x]] + I*b*PolyLog[2, -E^ArcSinh[c*x]] - I*b*PolyLog[2, E^ArcSinh[c*x]] 
))/Sqrt[1 + c^2*x^2]))/2
 

3.2.34.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4670
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x 
_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] 
 + (-Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*fz*x 
)], x], x] + Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e 
+ f*fz*x)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6221
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
 (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*Arc 
Sinh[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt 
[1 + c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x] 
, x] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]   I 
nt[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d 
, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 6222
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*Arc 
Sinh[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1)))   Int[(f*x)^(m 
 + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*c*(n/(f*( 
m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 + c^2*x 
^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e 
, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
 

rule 6231
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.) 
*(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e 
*x^2]]   Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ 
[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]
 
3.2.34.4 Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.07

method result size
default \(a \left (-\frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{2 d \,x^{2}}+\frac {3 c^{2} \left (\frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3}+d \left (\sqrt {c^{2} d \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )\right )\right )}{2}\right )+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (2 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}+3 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-3 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-2 c^{3} x^{3}+3 \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-3 \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}-c x \right ) d}{2 \sqrt {c^{2} x^{2}+1}\, x^{2}}\) \(289\)
parts \(a \left (-\frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{2 d \,x^{2}}+\frac {3 c^{2} \left (\frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3}+d \left (\sqrt {c^{2} d \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )\right )\right )}{2}\right )+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (2 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}+3 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-3 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-2 c^{3} x^{3}+3 \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-3 \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) x^{2} c^{2}-\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}-c x \right ) d}{2 \sqrt {c^{2} x^{2}+1}\, x^{2}}\) \(289\)

input
int((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x^3,x,method=_RETURNVERBOSE)
 
output
a*(-1/2/d/x^2*(c^2*d*x^2+d)^(5/2)+3/2*c^2*(1/3*(c^2*d*x^2+d)^(3/2)+d*((c^2 
*d*x^2+d)^(1/2)-d^(1/2)*ln((2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x))))+1/2*b 
*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/x^2*(2*arcsinh(c*x)*(c^2*x^2+1)^( 
1/2)*x^2*c^2+3*arcsinh(c*x)*ln(1-c*x-(c^2*x^2+1)^(1/2))*x^2*c^2-3*arcsinh( 
c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))*x^2*c^2-2*c^3*x^3+3*polylog(2,c*x+(c^2*x^ 
2+1)^(1/2))*x^2*c^2-3*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*x^2*c^2-arcsinh(c* 
x)*(c^2*x^2+1)^(1/2)-c*x)*d
 
3.2.34.5 Fricas [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int { \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{3}} \,d x } \]

input
integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x^3,x, algorithm="fricas" 
)
 
output
integral((a*c^2*d*x^2 + a*d + (b*c^2*d*x^2 + b*d)*arcsinh(c*x))*sqrt(c^2*d 
*x^2 + d)/x^3, x)
 
3.2.34.6 Sympy [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int \frac {\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{x^{3}}\, dx \]

input
integrate((c**2*d*x**2+d)**(3/2)*(a+b*asinh(c*x))/x**3,x)
 
output
Integral((d*(c**2*x**2 + 1))**(3/2)*(a + b*asinh(c*x))/x**3, x)
 
3.2.34.7 Maxima [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int { \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{3}} \,d x } \]

input
integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x^3,x, algorithm="maxima" 
)
 
output
-1/2*(3*c^2*d^(3/2)*arcsinh(1/(c*abs(x))) - (c^2*d*x^2 + d)^(3/2)*c^2 - 3* 
sqrt(c^2*d*x^2 + d)*c^2*d + (c^2*d*x^2 + d)^(5/2)/(d*x^2))*a + b*integrate 
((c^2*d*x^2 + d)^(3/2)*log(c*x + sqrt(c^2*x^2 + 1))/x^3, x)
 
3.2.34.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x^3,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.34.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (d\,c^2\,x^2+d\right )}^{3/2}}{x^3} \,d x \]

input
int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(3/2))/x^3,x)
 
output
int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(3/2))/x^3, x)